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Abstract—Tuberculosis (TB) is a deadly infectious disease and
the presence of cavities in the upper lung zones is a strong
indicator that the disease has developed into a highly infectious
state. Currently, the detection of TB cavities is mainly conducted
by clinicians observing chest radiographs. Diagnoses performed
by radiologists are labor intensive and very often there is
insufficient healthcare personnel available, especially in remote
communities. After assessing existing approaches, we propose
an automated segmentation technique which takes a hybrid
knowledge-based Bayesian classification approach to detect TB
cavities automatically. We apply gradient inverse coefficient of
variation (GICOV) and circularity measures to classify detected
features and confirm true TB cavities. By comparing with non-
hybrid approaches and the classical active contour techniques
for feature extraction in medical images, experimental results
demonstrate that our approach achieves high accuracy with a
low false positive rate in detecting TB cavities.

Index Terms—Image segmentation, classification, tuberculosis
detection, computer-aided detection.

I. INTRODUCTION

ALTHOUGH effective therapies have reduced the fatality
rate from infectious pulmonary tuberculosis (TB), TB

continues to be a public health problem of global propor-
tions especially in developing countries [1]. Due to the high
infectivity and fatality rate of TB [1], timely detection and
treatment is very important. Although cavitation in the lungs
is not very common in primary TB, cavitation in the upper lung
zones (ULZs, i.e., upper half of a lung) is more common in
postprimary TB (also known as typical TB or reactivation TB)
and it is an indicator that the disease has developed into a state
of high infectivity [2]. Therefore, the detection of such cavitary
cases is important in order to prevent further transmission of
the disease. In immigration medical examinations, chest radio-
graphy is usually used as the primary detection tool for TB [3]
[4]. In routine diagnosis of TB, although methods like skin test
and blood test can be used, a chest radiograph (CXR) is usually
taken when the patient shows pulmonary symptoms [5] or the
prevalence of the disease is high in the populations [2]. The
combination of radiographic findings and demographic/clinical
data helps physicians to decide the possibility of infectious
TB. This paper focuses on accurately detecting TB cavities
from CXRs. Currently, the detection of TB cavities from
CXRs is mainly conducted visually by radiologists based on
their knowledge and experience. Examining mass CXRs even
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on a periodic basis is too demanding on resources given a
limited number of radiologists. The objective of developing
computer-aided diagnosis/detection (CAD) system is to make
this diagnostic procedure more efficient.

CAD systems dealing with different imaging modalities
have been developed for diagnoses of various diseases, and
have become commonly used in routine diagnostic procedures,
such as the diagnosis of breast cancer and lung cancer [6].
Although numerous techniques for segmenting lung fields have
been proposed [7] [8], automatic detection of TB cavities from
CXRs has not been adequately studied. Previous researchers
have worked on distinguishing abnormal CXRs from normal
ones using texture features [9] [10], however, their approaches
do not aim to locate cavities. In this paper, we propose a
technique to automatically segment and classify TB cavities
from digital CXRs. Our method can be applied either indepen-
dently or as an additional step to previous methods to provide
physicians with more information about suspected TB.

Since the presence of cavities in the upper thoracic area
often suggests typical TB, automatic segmentation and clas-
sification of these cavities taking spatial, geometric and de-
mographic information into consideration is useful for a CAD
system. Active contour (AC) models (or snakes) [11] [12] [13]
are commonly used as segmentation techniques for medical
images, though prior knowledge of the region of interest
(ROI) is often needed in order to guide the execution and
successful convergence of these algorithms. AC models can
be categorized into two types: level set and parametric. The
convergence of level set techniques is usually slower than
parametric methods because the deformation of a higher
dimensional function is required [12]. Besides, level set is
very sensitive to noise resulting in the extraction of too many
false objects. Given an initial contour, the external and internal
forces of parametric snakes drive the evolution and converge
to the final contour much faster than level set snakes. However,
as discussed in earlier research [13], traditional parametric
AC models have limited capture range. It cannot converge
accurately unless an initial contour is specified close to the
region of interest. Boundary Vector Flow (BVF) [11], an
enhanced version of the traditional parametric AC models, has
successfully increased the capture range but is not suitable to
extract acute concave angles. Since TB cavities are often close
to spherical and non-concave, we investigated the feasibility of
applying BVF to detect TB cavities. Experimental results show
that BVF fails to converge due to complex tissue patterns, e.g.,
acinar shadows, as shown in Figure 1(a) (only the halves that
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contain the cavities are shown). Magnetostatic active contour
(MAC) model [12] is a level set snake. Although slower
than parametric methods, it is able to extract multiple objects
starting from a single initial contour. Since more than one TB
cavity is possible in infected lungs, we assess the performance
of MAC in segmenting multiple cavities. Test results show that
multiple level sets not corresponding to the TB cavities are
generated (Figure 1(b)). More test results will be discussed in
Section IV. A common weakness of most AC models is the
necessity to define an initial contour close to the ROI in order
for the algorithms to evolve and converge. Given the large
volume of CXRs to be examined, an automatically generated
initial contour is desirable.

(a) BVF for single-cavity (left) and
two-cavity (right) cases.

(b) MAC for single-cavity (left) and
two-cavity (right) cases.

Fig. 1. Complex patterns prevent the convergence of BVF in these images.
MAC can generate multiple level sets but fail to segment correctly due also
to complex patterns.

The major challenge in the cavity detection from CXRs
is the complicated texture and varied intensity distribution
in the lung fields caused by TB infection (e.g., parenchymal
infiltrates and acinar shadows) and the superimposed anatom-
ical structures (e.g., the soft skin, muscles, tissues, organs,
and the radiodense ribcage), which may blur the boundaries
of the cavities or even partially occlude the cavities. The
presence of superimposed anatomical structures makes the
discrimination of image features and the interpretation of a
CXR extremely challenging even for clinical experts [14].
Various subtraction techniques were discussed in the liter-
ature attempting to remove normal or unrelated anatomical
structures in CXRs. Dual energy subtraction and temporal
subtraction are proposed to characterize abnormal findings
especially for subtle lesions. Dual energy subtraction [15] is
based on exploiting the differential attenuation of low-energy
x-ray photons by calcium to generate separate images for
bones and soft tissues. Dual energy subtraction radiography
is not fully available for clinical use especially in remote
communities. Temporal subtraction [15] [16] based on a
previous radiograph of the same patient is not applicable in
our case because we are interested in detecting abnormalities
in the first CXR of a patient. Without a previous radiograph
for comparison, contralateral subtraction [17] [18] assuming
the symmetry of the ribcage and the mirroring of the left
and right lung fields can be applied. In this case, a possible
outcome of this method is the elimination of important features
that may appear symmetrically on both sides of the thorax.
Another approach is to measure the smoothness across the
anatomical structure identifying superimposing borders [19];
or to fit a predefined model to the input image to suppress
normal structures [20]. Most of such subtraction approaches
are based on the symmetry assumption of the ribcage in

the left and right lungs. However, analysis of the CXRs
shows that the conditions, such as the texture and shape,
in the individual lungs could vary significantly. Therefore,
subtraction techniques cannot be directly applied. To deal
with the complicated texture and varied intensity distribution,
a clustering and adaptive thresholding scheme coupled with
a robust AC model is applied in our approach to extract
suspected cavities. True cavities are then distinguished from
false positives (FPs) using a Bayesian classifier. Both the
segmentation and classification are automatic. We believe that
our work is one of the first attempts at automatically locating
pulmonary TB cavities in CXRs with high accuracy and low
FP rate (FPR).

The rest of the paper is organized as follows. Section II
introduces the materials used in this study. Section III ex-
plains our proposed technique in detail. Section IV presents
experimental results. Section V discusses the limitation of
the proposed approach. Finally, conclusion and future work
is given in Section VI.

II. MATERIALS AND PRE-PROCESSING

Two image databases are used in this study. Images are
grouped into three sets: 20 in the cavity set, 19 in the non-
cavity set, and 110 in the normal set. The images in the cavity
set are from patients who were diagnosed with typical TB
and showed cavities in CXRs. The images in the non-cavity
set are from patients who were diagnosed with typical TB
but showed no cavity in CXRs. The images in the normal
set are from patients who were not diagnosed with typical
TB and showed normal (or close to normal) lungs with no
cavity in CXRs. The first database contains 20 posterior-
anterior (PA) CXRs with TB cavities, 19 PA CXRs without TB
cavities, and 17 PA CXRs of normal cases without evidence
of TB collected at hospitals in Alberta, Canada from routine
TB diagnosis. All images were read independently by three
experienced chest radiologists, who are specialized in TB
diagnosis. When the interpretations of an image were different
between the radiologists, they re-analyzed the image and came
to a consensus. The presence of TB cavities in an image was
confirmed by the radiologists. The locations, sizes, and wall
thicknesses of the TB cavities in each image were recorded. A
cavity is defined as a parenchymal cyst greater than 10mm in
diameter. The final diagnoses were made by combining both
radiographic and patient-related demographic/clinical informa-
tion, e.g., age, gender, ethnic group, HIV status, country-of-
birth, smear, shortest time-to-culture (days). In the cavity set,
19 CXRs have 1 cavity each and 1 CXR has 2 cavities, which
makes 21 cavities in total. Two images in the cavity set are
shown in Figure 2. These images usually have low contrast
and complicated texture. The complex patterns surrounding a
TB cavity are indicated by red arrows. The second database
obtained from [21] contains 93 PA CXRs of normal cases.
The images were examined by three chest radiologists.

Before applying the proposed technique, every image in the
three sets was pre-processed using the following procedure.
First, an image is scaled to have pixel size equivalent to 0.7mm
with 8-bit intensity. Therefore, a valid cavity should have a



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. X, NO. X, XXX 2010 3

(a) Single cavity. (b) Multiple cavities.

Fig. 2. The original chest radiographs with TB cavities often have low
contrast and complicated texture.

diameter greater than 15 pixels. Second, a 400× 200 window
is used to extract the portion of the scaled image that includes
most of the ULZs but excludes most of the lower lung zones.
The vertical center line of the window is manually aligned with
the center line of the spine. Finally, this subimage is histogram
equalized and gaussian smoothed to enhance contrast while
reducing noise caused by the complicated texture. Figure 3
shows one example of the pre-processed image. The enhanced
subimage inside the green rectangle is the result of the pre-
processing procedure and it is placed on top of the scaled
image to show its relative position. Because of the complicated
texture, existing automatic lung segmentation methods [7] [8]
tend to extract only part of a lung (i.e., only the darker regions).
Therefore, it is difficult to directly apply these methods without
adaptation for lungs infected with TB. Instead, after examining
30 pre-processed images, a mask is created to approximate
the ULZs, as shown in Figure 4(a). The masked image of
the one shown in Figure 3 is displayed in Figure 4(b). Pixels
corresponding to the black area in the mask, i.e., pixels outside
the ULZs, are discarded when calculating the initial contours
and the classification measures.

Fig. 3. The pre-processed image. The image in the background is the scaled
image. The enhanced subimage inside the green rectangle is the result of the
pre-processing procedure.

(a) The mask. (b) The masked image.

Fig. 4. A mask is used to approximate the ULZs.

III. A HYBRID KNOWLEDGE-GUIDED DETECTION
FRAMEWORK

Differing from many other segmentation methods proposed
in the literature, the initialization step in our solution is fully
automatic, which is necessary when a large number of CXRs
need to be examined. The detection process consists of three
phases. In Phase I, adaptive thresholding integrated with an
enhanced mean shift technique inspired by [22] is applied
to define initial contours of suspected cavities; the initial
contours are then converged using an AC model coupled with
Dirichlet boundary conditions (BC), following an approach
similar to [23]. Our knowledge-guided screening technique
eliminates a large proportion of FPs in Phase I, reducing
unnecessary computations. In Phase II, the suspected TB
cavities are either confirmed or excluded by using optimal
thresholds in a Bayesian classification technique based on
gradient inverse coefficient of variation (GICOV) [24] and M
circularity measure [25]. If a cavity appears near the clavicles,
it is very likely that the cavity is partially occluded (Figure 5),
which makes the visible part violate the circularity criterion.
In addition, as compared in Figure 5, the radiodense clavicles
make the intensity distribution of lung fields near them (inside
blue rectangle) quite different from other portions of the lung
fields (inside yellow rectangle), which may require a different
GICOV threshold. Therefore, if no cavity is confirmed in the
clavicular regions in Phase II, those regions go through another
segmentation and classification phase (Phase III) using new
GICOV and circularity thresholds calculated for them. An
overview of the detection framework is given in Figure 6.

Fig. 5. A cavity is split into two parts by the clavicle. The texture pattern
and intensity distribution differ significantly between the region inside the
blue rectangle and the region inside the yellow rectangle.

Fig. 6. A hybrid knowledge-guided detection framework.

A. Phase I: Automatic Initialization and Convergence of Sus-
pected Cavities

Although AC models based on energy minimization are
effective segmentation methods, the traditional AC models
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have several drawbacks: they are sensitive to the initial contour
placement, can have a capture range too small to detect
cavities, may need to apply different parameter values to guide
convergence, and do not perform well on weak edges [13]. To
deal with these problems and take advantage of the knowledge
that the boundaries of TB cavities follow a dark-to-bright tran-
sitions in CXRs, we incorporate the directional gradient vector
flow (GVF) models combined with Dirichlet BC proposed by
Ray and Acton [23] to delineate the suspected TB cavities.
This AC model performs well for contrast changes and weak
edges. Since multiple cavities can exist (Figure 2(b)), we
cannot apply fluid vector flow (FVF) [13], which is designed
to segment only a single region.

In contrast to other AC models which require an initial con-
tour to be selected manually, we automate the initial contour
placement using mean shift segmentation (Figure 7(b)), and
apply adaptive thresholding to control the clustering process.
Mean shift [22] is a feature space analysis technique that
clusters neighboring data points with similar characteristics
using a neighborhood search procedure, which locates the local
maxima in a probability density function (PDF), based on the
kernel density estimation (or Parzen window method). The
mean shift segmentation is based on a recursive mean shift
procedure. In this procedure, for each point xi, a mean shift
vector is defined using the following equation to represent the
difference between the weighted mean of a kernel (window)
G(x) and the center x of the kernel:

mh,G =
∑n
i=1 xig(‖x−xi

h ‖
2)∑n

i=1 g(‖x−xi

h ‖2)
− x, (1)

where g(x) is the derivative of the selected kernel profile k(x),
a function used to define the kernel, and h is the bandwidth
that defines the radius of the kernel. Then, the location of G
is shifted by mh,G until convergence, i.e., the weighted mean
of G and x overlap. The final location yi of G is given by its
center in the last iteration:

yi =
∑n
i=1 xig(‖x−xi

h ‖
2)∑n

i=1 g(‖x−xi

h ‖2)
. (2)

For image data, each data point (pixel) is treated as a
d-dimensional feature vector that has two components, one
spatial component encoded as a 2-dimensional vector (i.e.,
image coordinates) and one range component encoded as a
p-dimensional vector (e.g., the LUV components for a color
image where p = 3); and d = p+ 2. Therefore, the kernel is
defined to represent the features in both the spatial and range
domains:

Khs,hr (x) =
C

h2
sh
p
r
k(‖x

s

hs
‖2)k(‖x

r

hr
‖2), (3)

where hs and hr are the kernel bandwidths in the spatial do-
main and range domain, respectively; xs and xr are the spatial
and range parts of a feature vector, respectively; and C is a
normalization constant. Now, the bandwidth parameter used in
Equation 1 becomes a pair of parameters, i.e., h = (hs, hr).
As hs increases, only large spatial features persist; and as hr
increases, only features with strong color contrast persist. For

each pixel xi, its final value is given by:

zi = (xsi , y
r
i,c), (4)

where xsi denotes the spatial part of the input vector, and
yri,c denotes the range part of the kernel location vector at
convergence.

After the local maxima are located, the neighboring pixels
are clustered towards a local maximum if they are closer than
hs in the spatial domain and hr in the range domain. Finally,
spatial regions with less than W pixels are merged together.
The bandwidth parameters and merging parameter are chosen
to best segment out the TB cavities in the training image set,
which consists of three images. We set h = (3, 3) and W =
50 so that most pixels inside a TB cavity are grouped into
one cluster. As shown in Figure 7(b), the pixels of the single
cavity in the right half of the image (left lung) are assigned
the same graylevel. Although mean shift was used in many
applications, such as image segmentation (described above)
and object tracking [26], it has not been used to locate an
initial contour as in our solution.

(a) Pre-processed. (b) Mean shift-segmented.

(c) Thresholded. (d) Initial contours.

(e) Segmented. (f) Classified.

Fig. 7. The original image in Figure 2(a) is pre-processed before the detection
procedure.

Selecting a global threshold for the entire image cannot
produce accurate result because of the varied intensity dis-
tribution. In our adaptive thresholding approach, the threshold
needs to be determined by local image attributes which reflect
not only the characteristics in the neighborhood, but also the
presence of TB cavities if any. In order to discover such an
attribute, we perform experiments using the training image set.
Due to the destruction of pulmonary tissue caused by TB, the
texture of one lung is very likely to be quite different from the
other in the same CXR. Therefore, different thresholds should
be applied to individual lungs according to their contents.
Experimental results suggest that for a lung field Rl, the
threshold b needed for segmenting out the clusters, which
are within a TB cavity, increases as the GICOV threshold γ
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computed from Rl increases. This is quite intuitive since the
GICOV threshold can be considered as a measure of the level
of noise in Rl. Normally, the higher γ is, the noisier Rl is.
(More description on GICOV will be covered in Sections III-B
and III-C). Therefore, the adaptive threshold b is calculated for
each lung field based on γ as:

b = a1γ
2 + a2γ + a3. (5)

The coefficients ai’s are determined by linear regression using
the GICOV thresholds obtained from training images. The
binary image after thresholding the mean shift segmented
image is shown in Figure 7(c). The combination of the mean
shift segmentation and the adaptive thresholding automates the
active contour initialization process and saves computational
time by excluding a large number of FPs. For each foreground
region (white region) inside the ULZs, a circle near the center
of the region is chosen as the initial contour for the GVF snake
with Dirichlet BC. To accelerate the convergence of the snake,
the radius R of the circle is determined by the size S of the
region:

R = max(3,
√
S/π). (6)

The initial contours (green circles) are shown in Figure 7(d).
Figure 7(e) shows the segmented suspected TB cavities (yel-
low contours).

B. Phase II: Hybrid Knowledge-Guided Classification

After the suspected TB cavities are segmented out from the
images, they are classified using a Bayesian classifier. Two
features are considered: the inner boundary of a TB cavity
usually has dark-to-bright transition; and the shape of a TB
cavity often appears circular in a CXR. To best represent the
two features, we choose descriptors: the gradient inverse coef-
ficient of variation (GICOV) [24], which is good at describing
region boundaries, and the M circularity measure [25], which
is good at describing the circularity of a region. Let V be the
GICOV score and M be the circularity score obtained from a
given contour C. Let the a posteriori probabilities of the class
(ωt) of TB cavities and the class (ωn) of non-TB cavities
given V be Pωt(V ) and Pωn(V ) respectively, and given M
be Pωt(M) and Pωn(M) respectively. Then the classification
problem can be formulated based on Bayes decision rule:

(V,M) ∈

 ωt, if (Pωt(V ) > Pωn(V ))∧
(Pωt(M) > Pωn(M));

ωn, otherwise.
(7)

Here the thresholds for V and M are determined separately
instead of using the standard naive Bayes, because V is
employed in the modeling of the PDF of M (Section III-C).
Hence, considering the feature independence assumption in
naive Bayes, the current format of the decision rule, i.e.,
applying the two measures sequentially, is used. After finding
the Bayes decision threshold γ for GICOV and m for circu-
larity such that Pωt(V ) = Pωn(V ) and Pωt(M) = Pωn(M),
Equation 7 can be rewritten as:

(V,M) ∈
{
ωt, if (V > γ) ∧ (M < m);
ωn, otherwise. (8)

Note that the GICOV threshold and circularity threshold are
calculated for individual lung fields to accommodate varied
image conditions. Using this rule, a true TB cavity can be
distinguished from FPs, as marked in red in Figure 7(f). In
a practical situation, physicians can combine this rule with
expert knowledge about the locations of the cavities and the
demographic data of the patient to make the final decision.

The GICOV score V of a contour is defined as [24]:

V =
X̄
S√
n

, (9)

where X̄ is the mean of the directional gradients X =
{X1, . . . , Xn} computed at a set of random sample locations
on the contour, and S = std(X) is the standard deviation of
X . We assume that X is computed in 16 cardinal directions,
i.e., n = 16. The direction of the directional gradient Xi at
image location (x, y) is defined as the unit outward normal
~n(x, y) at that location, and the magnitude is defined as the
sum of the projections of the gradients in the x- and y-
directions onto ~n(x, y). A higher GICOV score V of a contour
indicates that it resides on a stronger boundary.

The circularity score M of a contour is defined as [25]:

M =
L∑
i=1

var(di,j)
max(di,j)

, (10)

where L is the number of centers of gravity for the contour;
di,j is the distance from the ith center of gravity to the contour
in the jth direction (j ∈ {1, . . . , n}); and max(di,j) serves as
a normalization factor to make the measure scale invariant. A
perfect circle generates a zero circularity score (i.e., M = 0)
since var(di,j) = 0. Here we make the following assumptions:
1) each contour has a single center of gravity, i.e., L = 1; 2)
di,j is calculated in 16 cardinal directions, i.e., n = 16.

C. Optimal Threshold Selection

The optimal GICOV threshold γ is calculated in a similar
way as in [24], which aims to find the critical GICOV score
γ such that Pωt(V ) > Pωn(V ) for any V > γ. In order
to get the threshold, the GICOV density function needs to
be modeled first. We make the following assumption: Xi ∼
N(µv, σ2

v) if Xi resides on a strong edge; and Xi ∼ N(0, σ2
v)

otherwise. The first-order derivative of Gaussian is used to
estimate the image gradient, gx(x, y, σ1) for the x-direction
and gy(x, y, σ1) for the y-direction. In [24], µv and σv are
estimated using a general noise estimation of the whole image
set. This is appropriate only when the gradient intensity
distribution has little variation across the whole image set.
However, in the case of TB CXRs, the image condition differs
significantly even from one region to another in the same
image. Therefore, we estimate µv and σv based on the image
gradient distribution of each lung field as:

µv =
(max(gx)−min(gx) + max(gy)−min(gy))/2√

((std(gx) + std(gy))/2)2 + 2πσ2
1

, (11)

σv =
(std(gx) + std(gy))/2

2
√

2πσ2
1

, (12)
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where we set σ1 = 1 in our experiment. As proved in [24], V
follows a Gaussian distribution V ∼ N(µ1

µ2

√
n,

σ2
1
µ2

2
+ µ2

1σ
2
2

µ4
2

),

where µ1 = rvµv , σ2
1 = σ2

v

n , µ2 =
√

n
n−1 rv(1−rv)µv+σ2

v

2
√

n
n−1 rv(1−rv)µv

,

and σ2
2 = σ2

v

n−1 . Here, rv is a free parameter representing the
percentage of samples that lie on a strong edge. Using Bayes’
theorem, the posterior probabilities, Pωt(V ) and Pωn(V ) used
in Equation 7, can be expressed as:

Pωt(V ) =
P (ωt)p(V |ωt)

p(V )
, Pωn(V ) =

P (ωn)p(V |ωn)
p(V )

. (13)

The goal is to find a threshold γ such that Pωt(V ) = Pωn(V ),
i.e., P (ωt)p(V |ωt) = P (ωn)p(V |ωn). Same as in [24],
P (ωt)p(V |ωt) is modeled as the sum of the probabilities
of different patterns (i.e., different numbers of sample points
lying on a strong edge) belonging to the TB cavity class ωt
and P (ωn)p(V |ωn) the sum of the probabilities of different
patterns belonging to ωn:

P (ωt)p(V |ωt) =
n∑

j=rvn

πjp(V |j), (14)

P (ωn)p(V |ωn) =
rvn−1∑
j=0

πjp(V |j), (15)

where πj = Cjnp
j
v(1− pv)n−j represents the prior probability

of pattern j, which is assumed to follow a binomial distribu-
tion. This means that a contour with at least rvn samples lying
on strong edges satisfies the GICOV measure.

The optimal circularity threshold is computed in a similar
fashion, which aims to find the critical circularity score m
such that Pωt(M) > Pωn(M) for any M < m. In order to
model the circularity density function, we make the following
assumption: di,j ∼ N(0, σ2

m) if the sample in the jth direction
resides on a perfect circle; and di,j ∼ N(µm, σ2

m) otherwise.
In our experiment, we find that a region in a CXR with higher
level of noise (µv and σv are large) usually generates higher
GICOV threshold. Therefore, the GICOV threshold γ of a
region can serve as a measure of the noise level in that region.
It is more difficult to perceive a perfect circle in a noisier
region in a CXR. Therefore, higher γ indicates lower chance
of observing low m. Based on this observation, µm and σm
are estimated as functions of γ. Through experiments on the
training set, we found the following forms of µm and σm give
the best discrimination between Pωt(M) and Pωn(M):

µm = logπ γ, (16)

σm = (logπ γ)2. (17)

max(di,j) is estimated by solving Pr(di,j ≤ max(di,j)) ≥
cm, which gives the following solution according to the con-
nection between probability theory and theory of errors [27]:

max(di,j) ≥ µm +
√

2σmerf−1(2cm − 1), (18)

where erf−1(·) is the inverse Gaussian error function. Equa-
tion 18 gives a lower bound of max(di,j). In our experiment,
we use the following equation to estimate max(di,j):

max(di,j) = 8(µm +
√

2σmerf−1(2cm − 1)). (19)

Like S in Equation 9, which is proved to follow a Gaussian
distribution [24], M also follows a Gaussian distribution
M ∼ N(µ3, σ

2
3), where µ3 =

√
n

n−1 rm(1−rm)µm+σ2
m

2
√

n
n−1 rm(1−rm)µm max(di,j)

and σ2
3 = σ2

m

(n−1) max(di,j)2
. Similar to the GICOV threshold

selection, Pωt(M) and Pωn(M) can be decomposed using
Bayes’ theorem, and P (ωt)p(M |ωt) and P (ωn)p(M |ωn) are
modeled as:

P (ωt)p(M |ωt) =
rmn−1∑
j=0

πjp(M |j), (20)

P (ωn)p(M |ωn) =
n∑

j=rmn

πjp(M |j), (21)

where πj = Cjnp
j
m(1−pm)n−j represents the prior probability

of pattern j, which is assumed to follow a binomial distribu-
tion. This means that a contour with at least (1−rm)n samples
lying on a perfect circle satisfies the circularity measure. Note
that the GICOV threshold γ and the circularity threshold m are
calculated for every single lung field, since the conditions of
the image regions (e.g., texture and contrast) vary significantly.

D. Phase III: Cavity Detection in the Clavicular Regions

If no cavity is detected in regions near clavicles, this
third phase is performed to detect cavities in those regions,
which may be missed by the previous two phases due to the
radiodense clavicles. The upper half of the ULZs extracted
by the mask (Figure 4(a)) is considered as the clavicular
regions. The GICOV thresholds γ′ are calculated using the
same procedure in Section III-C but only based on pixels in
the clavicular regions. Since cavities detected in these regions
usually do not satisfy the circularity criterion due to occlusion
by the clavicles, a higher circularity threshold m′ = 3m is
used, where m is the threshold calculated for that whole ULZ.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The goal of our experiments is to verify the effectiveness
of the detection framework using the proposed classification
measures, i.e., GICOV alone, circularity alone, and the hybrid
approach, in identifying TB cavities.

A. Experiment I - Verifying the Proposed Detection Technique

In the first set of tests, the proposed hybrid technique is
evaluated using all the images in the three image sets. 4
images in the cavity set (one cavity in each image), 4 images
in the non-cavity set and 10 images in the normal set serve
as the training set, while all the other 131 images are used
as the test set. Figure 8 shows the Bayes decision rules for
2 cavitary cases in the training set derived from PDFs. The
charts in the first row illustrate the Bayes decision rules given
GICOV scores for the ULZs that contain TB cavities. The
vertical axis represents the probability, and the horizontal
axis represents the GICOV score. The blue curves are the
PDFs for P (ωt)p(V |ωt) and the red curves are the PDFs
for P (ωn)p(V |ωn). The charts in the second row illustrate
the Bayes decision rules given GICOV scores for clavicular
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TABLE I
DETECTION RESULTS ON THE TRAINING AND TEST SETS. FOR THE TEST SET, THE TPR IS 82%, WHILE THE FPR IS 0.9/IMAGE ON THE CAVITY SET,

0.7/IMAGE ON THE NON-CAVITY SET, AND ONLY 0.05/IMAGE ON THE NORMAL SET.

Training Set Test Set
C Set NC Set N Set All C Set NC Set N Set All

# of Images 4 4 10 18 16 15 100 131
# of Cavities 4 0 0 4 17 0 0 17

# of TP 4 – – 4 14 – – 14
TPR (%) 100 – – 100 82.35 – – 82.35
# of FP 3 2 0 5 15 11 5 31

FPR (#/image) 0.75 0.5 0 0.278 0.938 0.733 0.05 0.237
# of Missing 0 – – 0 3 – – 3

Average Time (sec/image) 26.415 7.798 4.446 10.073 34.981 19.868 3.217 8.469

C Set: cavity set; NC Set: non-cavity set; N Set: normal set.

Fig. 8. The Bayes decision rules given GICOV scores for the cavitary ULZs
(first row), the Bayes decision rules given GICOV scores for the clavicular
regions in the cavitary ULZs (second row), the Bayes decision rules given
circularity scores for right lungs (third row), and the detection results (last
row) using both GICOV and circularity measures for the training images.

regions in the cavitary ULZs. The charts in the third row
illustrate the Bayes decision rules given circularity scores for
the ULZs. The vertical axis represents the probability, and the
horizontal axis represents the circularity score. The blue curves
are the PDFs for P (ωt)p(M |ωt) and the red curves are the
PDFs for P (ωn)p(M |ωn). The last row displays the detection
results using both GICOV and circularity measures. Red
contours are TPs. The optimal thresholds for the training set
were obtained by using the following parameters: rv = 70%,
pv = 57%, rm = 60%, pm = 70%, and cm = 85%. Different

values of the parameters were tested, and the thresholds
determined by this set of parameters produced the highest
precision (i.e., # of TP/(# of TP + # of FP)) when the highest
TP rate (TPR) was achieved on the training set. Therefore, this
set of parameters was applied to the test set. The result of the
linear regression for calculating the coefficients of the adaptive
thresholding in Equation 5 is depicted in Figure 9. The
horizontal axis represents the GICOV score and the vertical
axis represents the threshold value. The resulting coefficients
are: a1 = 10.977, a2 = −118.784, and a3 = 389.359. For
the two cases in Figure 8, the optimal GICOV thresholds γ
for the cavitary ULZs are 7.137 and 7.229, and the optimal
GICOV thresholds γ′ for the clavicular regions in the cavitary
ULZs are 4.729 and 5.905. The optimal circularity thresholds
m for the cavitary ULZs are 0.223 and 0.225, and the optimal
circularity thresholds m′ for the clavicular regions in the
cavitary ULZs are 0.669 and 0.675.

Fig. 9. The adaptive threshold. The horizontal axis represents the GICOV
score and the vertical axis represents the threshold value. The resulting
coefficients are: a1 = 10.977, a2 = −118.784, and a3 = 389.359.

The performance of our detection method taking both GI-
COV and circularity scores into consideration is shown in Fig-
ure 10 as an FROC (free response operator characteristics) [28]
curve for the test set (131 images). The TPR is measured as
a function of the FPR. Higher TPR is achieved at the cost of
higher FPR. However, even at the highest TPR that is achieved,
the average FPR can be as low as 0.237/image. The detection
results at average FPR equivalent to 0.237/image (red cross in
Figure 10), as well as the performance on the training set, are
summarized in Table I. The detection accuracy on the training
set (18 images) is 100% with 5 FPs but no missing TP. The
detection accuracy on the test set is 82.35% with 31 FPs and 3
missing TPs. Most FPs are generated in the cavity set and the
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Fig. 10. FROC curve of our detection method for the test set. Higher TPR
is achieved at the cost of higher FPR. However, even at the highest TPR that
is achieved, the average FPR can be as low as 0.237/image.

Fig. 11. Complicated texture in typical cases tends to trigger FPs (the cyan
contours).

non-cavity set, both of which are CXRs of typical TB cases.
These typical cases usually show abnormal texture patterns in
the lung fields, which makes them prone to trigger FPs. Two
such cases from the non-cavity set are shown in Figure 11. The
cyan contours are FPs. In contrast, the FPRs are no higher than
0.05/image for both the normal training set and the normal test
set, and less than 0.3/image for both the entire training set and
the entire test set.

The entire algorithm was implemented in Matlab and was
run on a 2.53GHz dual-core laptop with 4GB memory. De-
pending on the complexity of the texture, the computational
times for the images vary. The average computational times for
different image sets are reported in Table I. The cavity set has
the highest average processing time, while the normal set has
the lowest. The most time consuming part in our algorithm is
using an AC algorithm to segment out suspected TB cavities.
The computational complexity is roughly proportional to the
number of suspected TB cavities that are delineated by the AC
algorithm.

B. Experiment II - Comparing the Three Proposed Classifica-
tion Measures

In the second set of tests, the performance of the three
proposed classification techniques: GICOV alone, circularity
alone, and hybrid, are compared. The whole test set in the
previous experiment was used and the results are reported in
Table II. All the three classification methods follow the same
segmentation procedure. The hybrid approach demonstrates
the best overall performance among the three with the FPR
as 0.237/image for all the 131 test CXRs and 0.05/image for
the 100 normal test CXRs, while the rate is almost doubled
when using GICOV alone or circularity alone. The comparison
of two test images using different classification measures are
illustrated in Figure 12. For the image on the left, using
GICOV alone produces 2 FPs, while the other two methods

(a) GICOV alone.

(b) Circularity alone.

(c) Hybrid.

Fig. 12. Comparison of performance using different proposed classification
measures on two test images. Using the hybrid classification method produces
fewer FPs than using GICOV alone or using circularity alone.

generate only 1 FP each. For the image on the right, using the
hybrid classification method produces 1 FP, while the other
two produces 3 and 2 FPs respectively.

C. Experiment III - Integrating Our Automatic Initialization
into BVF and MAC, and Comparing the Results with Our
Technique

(a) Initialization. (b) Proposed. (c) BVF. (d) MAC.

Fig. 13. Comparison of our technique with BVF and MAC using our
automatic initialization technique. Only the half ULZs that contain cavities
are shown. In our results, TPs are indicated in red, FPs in cyan, and other
delineated contours in yellow. The contours converged using BVF or MAC
are indicated in yellow. All the initial contours (green circles) are generated
automatically using our method. Our algorithm can delineate the cavity
boundaries very well, while BVF fails to deal with such noisy images and
MAC fails to successfully identify all the boundaries.

As reviewed in Section I, active contour models discussed
in the literature require the initial contour to be specified. Pro-
viding a precise initial contour on every image is impossible
when there is a big volume of CXRs to be examined. In CAD,
a reasonable approach is to approximate a location in the lung
field and start the snake evolution. We first tested a simple
automatic initialization scheme by choosing the mid-point in
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TABLE II
COMPARISON OF THE PERFORMANCE USING DIFFERENT CLASSIFICATION MEASURES ON THE TEST SET. THE HYBRID APPROACH DEMONSTRATES THE
BEST OVERALL PERFORMANCE AMONG THE THREE WITH THE FP RATE AS 0.237/IMAGE FOR ALL THE 131 TEST CXRS AND 0.05/IMAGE FOR THE 100

NORMAL TEST CXRS, WHILE THE RATE IS ALMOST DOUBLED WHEN USING GICOV ALONE OR CIRCULARITY ALONE.

Measures C Set NC Set N Set All
# of TP TPR # of FP FPR # of FP FPR # of FP FPR TPR FPR

GICOV 14 82.35% 33 2.063/image 17 1.133/image 7 0.07/image 82.35% 0.435/image
Circularity 14 82.35% 36 2.25/image 14 0.933/image 5 0.05/image 82.35% 0.420/image

Hybrid 14 82.35% 15 0.938/image 11 0.733/image 5 0.05/image 82.35% 0.237/image

(a) Results.

(b) Thresholded.

Fig. 14. Three cavities are missed by our technique because automatic
initialization fails to place initial contours inside the cavities.

each image, which is roughly in the middle of the ULZ, to
initialize a circle with a radius of three pixels as an initial
snake. 10 CXRs from the cavity set and another 10 CXRs from
the normal set are used to assess the feasibility of applying this
simple automatic initialization to BVF and MAC. Incorrect
convergences are reported in both cases, and neither BVF nor
MAC is able to segment the TB cavities correctly.

By introducing an adaptive thresholding approach, our TB
cavity detection technique is able to perform initialization
automatically. In order to compare the convergence capability,
we provide the initial contours to execute BVF and MAC on 10
cavitary cases. The segmentation results using our algorithm
on two test images are compared with those generated by
BVF and MAC in Figure 13. Only the half ULZs that contain
cavities are shown. In the results using our technique, TPs are
indicated in red, FPs in cyan, and other delineated contours
in yellow. The contours converged to using BVF or MAC are
indicated in yellow. All the initial contours (green circles) in
this comparison are generated automatically using our method.
Since BVF cannot segment multiple regions, only images with
single TB cavities are used and only those initial contours
within a confirmed TB cavity are used as initial snakes. If a
cavity is split into two parts by the clavicle, only the initial
contour in the larger part is used. For our technique and MAC,
all the initial contours are used. Our algorithm can delineate
the cavity boundaries very well, while BVF fails to deal with
such noisy images and MAC fails to successfully identify all
the boundaries.

V. LIMITATION

Figure 14(a) (only the cavitary ULZs are displayed) shows
the three cavities (indicated by red arrows) missed by our

method. This problem arises because automatic initialization
fails to place initial contours inside the cavities, as shown in
Figure 14(b). For computational efficiency, we use GICOV
to measure the texture complexity in our current thresholding
scheme. Since the adaptive threshold is determined based on
the pixels in the whole ULZ including background, it may fail
when the intensity distribution varies significantly from one
portion of the image to another, especially when the boundary
of the cavity is weak. To address the missing cavity issue, we
will explore the possibility of incorporating other techniques in
the future, such as locally adaptive thresholding or a template-
based scheme.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel hybrid approach for
automatic TB cavity detection from chest radiographs. To the
best of our knowledge, no automatic algorithm has been devel-
oped that can detect TB cavities from CXRs accurately. Our
approach first applies an enhanced mean shift segmentation
technique integrated with adaptive thresholding to automate
the initial contour placement. These initial contours are used
in a GVF snake model with Dirichlet boundary conditions to
segment out suspected features. In the subsequent Bayesian
classification process, GICOV and circularity thresholds are
applied. Experimental results demonstrate that our method
achieves good accuracy with a low FPR, i.e., 82.35% TPR and
0.237 FP per image on the 131 test CXRs, which outperforms
using the GICOV indicator alone or the circularity score alone.
For CXRs of normal lungs, the FPR is as low as 0.05/image.
We also compared our results with those generated by BVF
and MAC, and find that other active contour models are not
able to segment TB cavities in the test CXRs due to the
complex tissue patterns. Given a shortage of radiologists on
site, our technique can be used to eliminate a large number
of normal and suspected cases so that physicians can focus
on a smaller set of patients. Our contribution also lies in
introducing automatic initialization which is important for
CAD systems. In future work, we will look into an automatic
lung field segmentation technique, which may optimize the
adaptive thresholding process and improve the accuracy of
initial contour placement. We will also explore the possibility
of employing other classifiers and features. In addition, we will
explore techniques to approximate the geometric attributes of
TB cavities such as wall thickness, in order to provide more
detailed analysis for infectious pulmonary TB diagnosis.
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